Time Domain Finite Element Method for Maxwell’s Equations
نویسندگان
چکیده
منابع مشابه
A Finite Element Method for Time Fractional Partial Differential Equations
In this paper, we consider the finite element method for time fractional partial differential equations. The existence and uniqueness of the solutions are proved by using the Lax-Milgram Lemma. A time stepping method is introduced based on a quadrature formula approach. The fully discrete scheme is considered by using a finite element method and optimal convergence error estimates are obtained....
متن کاملA Finite Element Method for Time-dependent Convection-diffusion Equations
We present a finite element method for time-dependent convectiondiffusion equations. The method is explicit and is applicable with piecewise polynomials of degree n > 2 . In the limit of zero diffusion, it reduces to a recently analyzed finite element method for hyperbolic equations. Near optimal error estimates are derived. Numerical results are given.
متن کاملA Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids
In this paper the vector finite element time-domain (VFETD) method is derived, analyzed, and validated. The VFETD method uses edge vector finite elements as a basis for the electric field and face vector finite elements as a basis for the magnetic flux density. The Galerkin method is used to convert Maxwell’s equations to a coupled system of ordinary differential equations. The leapfrog method ...
متن کاملDomain Decomposition Solvers for Frequency-Domain Finite Element Equations
1 Institute for Applied Mathematics and Computational Science, Texas A&M University, College Station, USA, [email protected] 2 Institute of Computational Mathematics, Johannes Kepler University, Linz, Austria, [email protected]; [email protected] 3 Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria, ulrich.lan...
متن کاملSolution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2916394